Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 035, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.035
(Mi sigma1016)
 

On a Quantization of the Classical $\theta$-Functions

Yurii V. Brezhnev

Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
References:
Abstract: The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.
Keywords: Jacobi theta-functions; dynamical systems; Poisson brackets; quantization; spectrum of Hamiltonian.
Received: January 31, 2015; in final form April 17, 2015; Published online April 28, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yurii V. Brezhnev, “On a Quantization of the Classical $\theta$-Functions”, SIGMA, 11 (2015), 035, 11 pp.
Citation in format AMSBIB
\Bibitem{Bre15}
\by Yurii~V.~Brezhnev
\paper On a~Quantization of the Classical $\theta$-Functions
\jour SIGMA
\yr 2015
\vol 11
\papernumber 035
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma1016}
\crossref{https://doi.org/10.3842/SIGMA.2015.035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3340208}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355281200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84929429267}
Linking options:
  • https://www.mathnet.ru/eng/sigma1016
  • https://www.mathnet.ru/eng/sigma/v11/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025