Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 034, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.034
(Mi sigma1015)
 

A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms

Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
References:
Abstract: A Lie algebra $\mathfrak{g}_\mathbb{Q}$ over $\mathbb{Q}$ is said to be $\mathbb{R}$-universal if every homomorphism from $\mathfrak{g}_\mathbb{Q}$ to $\mathfrak{gl}(n,\mathbb{R})$ is conjugate to a homomorphism into $\mathfrak{gl}(n,\mathbb{Q})$ (for every $n$). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an $\mathbb{R}$-universal $\mathbb{Q}$-form. We also provide a classification of the $\mathbb{R}$-universal Lie algebras that are semisimple.
Keywords: semisimple Lie algebra; finite-dimensional representation; global field; Galois cohomology; linear algebraic group; Tits algebra.
Received: October 17, 2014; in final form April 14, 2015; Published online April 27, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dave Witte Morris, “A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have $\mathbb{Q}$-Forms”, SIGMA, 11 (2015), 034, 12 pp.
Citation in format AMSBIB
\Bibitem{Mor15}
\by Dave~Witte~Morris
\paper A Cohomological Proof that Real Representations of Semisimple Lie~Algebras Have $\mathbb{Q}$-Forms
\jour SIGMA
\yr 2015
\vol 11
\papernumber 034
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma1015}
\crossref{https://doi.org/10.3842/SIGMA.2015.034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3339733}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355281100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84929439265}
Linking options:
  • https://www.mathnet.ru/eng/sigma1015
  • https://www.mathnet.ru/eng/sigma/v11/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025