Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 033, 32 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.033
(Mi sigma1014)
 

This article is cited in 7 scientific papers (total in 7 papers)

Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A

Yuki Kanakubo, Toshiki Nakashima

Division of Mathematics, Sophia University, Yonban-cho 4, Chiyoda-ku, Tokyo 102-0081, Japan
Full-text PDF (568 kB) Citations (7)
References:
Abstract: Let $G$ be a simply connected simple algebraic group over $\mathbb{C}$$B$ and $B_-$ be two opposite Borel subgroups in $G$ and $W$ be the Weyl group. For $u$, $v\in W$, it is known that the coordinate ring ${\mathbb C}[G^{u,v}]$ of the double Bruhat cell $G^{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra $\bar{\mathcal{A}}(\mathbf{i})_{{\mathbb C}}$ and the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ are the cluster variables belonging to a given initial seed in ${\mathbb C}[G^{u,v}]$ [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52]. In the case $G={\rm SL}_{r+1}({\mathbb C})$, $v=e$ and some special $u\in W$, we shall describe the generalized minors $\{\Delta(k;{\mathbf{i}})\}$ as summations of monomial realizations of certain Demazure crystals.
Keywords: cluster variables; double Bruhat cells; crystal bases; monomial realizations, generalized minors.
Received: October 1, 2014; in final form April 14, 2015; Published online April 23, 2015
Bibliographic databases:
Document Type: Article
MSC: 13F60; 81R50; 17B37
Language: English
Citation: Yuki Kanakubo, Toshiki Nakashima, “Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A”, SIGMA, 11 (2015), 033, 32 pp.
Citation in format AMSBIB
\Bibitem{KanNak15}
\by Yuki~Kanakubo, Toshiki~Nakashima
\paper Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type~A
\jour SIGMA
\yr 2015
\vol 11
\papernumber 033
\totalpages 32
\mathnet{http://mi.mathnet.ru/sigma1014}
\crossref{https://doi.org/10.3842/SIGMA.2015.033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3338679}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355280700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84929441354}
Linking options:
  • https://www.mathnet.ru/eng/sigma1014
  • https://www.mathnet.ru/eng/sigma/v11/p33
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025