Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 030, 36 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.030
(Mi sigma1011)
 

This article is cited in 6 scientific papers (total in 6 papers)

Skein Modules from Skew Howe Duality and Affine Extensions

Hoel Queffelec

Mathematical Sciences Institute, The Australian National University, J.D. 27 Union Lane, Acton ACT 2601, Australia
Full-text PDF (640 kB) Citations (6)
References:
Abstract: We show that we can release the rigidity of the skew Howe duality process for $\mathfrak{sl}_n$ knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine $\mathfrak{sl}_m$ case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular $U_q(\mathfrak{sl}_n)$ representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
Keywords: skein modules; quantum groups; annulus; affine quantum groups.
Received: July 22, 2014; in final form March 30, 2015; Published online April 15, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Hoel Queffelec, “Skein Modules from Skew Howe Duality and Affine Extensions”, SIGMA, 11 (2015), 030, 36 pp.
Citation in format AMSBIB
\Bibitem{Que15}
\by Hoel~Queffelec
\paper Skein Modules from Skew Howe Duality and Affine Extensions
\jour SIGMA
\yr 2015
\vol 11
\papernumber 030
\totalpages 36
\mathnet{http://mi.mathnet.ru/sigma1011}
\crossref{https://doi.org/10.3842/SIGMA.2015.030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3336022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352987000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927663481}
Linking options:
  • https://www.mathnet.ru/eng/sigma1011
  • https://www.mathnet.ru/eng/sigma/v11/p30
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :38
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024