Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 073, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.073
(Mi sigma101)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials

A. Enciso, F. Finkel, A. González-López, M. A. Rodríguez

Depto. Física Teórica II, Universidad Complutense, 28040 Madrid, Spain
Full-text PDF (256 kB) Citations (2)
References:
Abstract: We review some recent results on quasi-exactly solvable spin models presenting near-neighbors interactions. These systems can be understood as cyclic generalizations of the usual Calogero–Sutherland models. A nontrivial modification of the exchange operator formalism is used to obtain several infinite families of eigenfunctions of these models in closed form.
Keywords: Calogero–Sutherland models; exchange operators; quasi-exact solvability.
Received: September 15, 2006; in final form October 23, 2006; Published online November 3, 2006
Bibliographic databases:
Document Type: Article
MSC: 81Q05; 35Q40
Language: English
Citation: A. Enciso, F. Finkel, A. González-López, M. A. Rodríguez, “Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials”, SIGMA, 2 (2006), 073, 11 pp.
Citation in format AMSBIB
\Bibitem{EncFinGon06}
\by A.~Enciso, F.~Finkel, A.~Gonz\'alez-L\'opez, M.~A.~Rodr{\'\i}guez
\paper Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials
\jour SIGMA
\yr 2006
\vol 2
\papernumber 073
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma101}
\crossref{https://doi.org/10.3842/SIGMA.2006.073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264889}
\zmath{https://zbmath.org/?q=an:1138.81013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100072}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234989}
Linking options:
  • https://www.mathnet.ru/eng/sigma101
  • https://www.mathnet.ru/eng/sigma/v2/p73
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024