Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 027, 4 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.027
(Mi sigma1008)
 

An Integrability Condition for Simple Lie Groups II

Maung Min-Oo

Department of Mathematics & Statistics, McMaster University, Hamilton, Canada
References:
Abstract: It is shown that a simple Lie group $G$ ($ \neq {\rm SL}_2$) can be locally characterised by an integrability condition on an $\operatorname{Aut}(\mathfrak{g})$ structure on the tangent bundle, where $\operatorname{Aut}(\mathfrak{g})$ is the automorphism group of the Lie algebra of $G$. The integrability condition is the vanishing of a torsion tensor of type $(1,2)$. This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E. A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205–211].
Keywords: simple Lie groups and algebras; $G$-structure.
Received: December 17, 2014; in final form March 26, 2015; Published online April 1, 2015
Bibliographic databases:
Document Type: Article
MSC: 53C10; 53C30
Language: English
Citation: Maung Min-Oo, “An Integrability Condition for Simple Lie Groups II”, SIGMA, 11 (2015), 027, 4 pp.
Citation in format AMSBIB
\Bibitem{Min15}
\by Maung~Min-Oo
\paper An Integrability Condition for Simple Lie Groups~II
\jour SIGMA
\yr 2015
\vol 11
\papernumber 027
\totalpages 4
\mathnet{http://mi.mathnet.ru/sigma1008}
\crossref{https://doi.org/10.3842/SIGMA.2015.027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3327734}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352985800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926289620}
Linking options:
  • https://www.mathnet.ru/eng/sigma1008
  • https://www.mathnet.ru/eng/sigma/v11/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :31
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024