Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 026, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.026
(Mi sigma1007)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the $q$-Charlier Multiple Orthogonal Polynomials

Jorge Arvesú, Andys M. Ramírez-Aberasturis

Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911, Leganés, Spain
Full-text PDF (388 kB) Citations (6)
References:
Abstract: We introduce a new family of special functions, namely $q$-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to $q$-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a $q$-analogue of the second of Appell's hypergeometric functions is given. A high-order linear $q$-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
Keywords: multiple orthogonal polynomials; Hermite–Padé approximation; difference equations; classical orthogonal polynomials of a discrete variable; Charlier polynomials; $q$-polynomials.
Received: November 10, 2014; in final form March 23, 2015; Published online March 28, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jorge Arvesú, Andys M. Ramírez-Aberasturis, “On the $q$-Charlier Multiple Orthogonal Polynomials”, SIGMA, 11 (2015), 026, 14 pp.
Citation in format AMSBIB
\Bibitem{ArvRam15}
\by Jorge~Arves\'u, Andys~M.~Ram{\'\i}rez-Aberasturis
\paper On the $q$-Charlier Multiple Orthogonal Polynomials
\jour SIGMA
\yr 2015
\vol 11
\papernumber 026
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma1007}
\crossref{https://doi.org/10.3842/SIGMA.2015.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3326138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351685600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926310857}
Linking options:
  • https://www.mathnet.ru/eng/sigma1007
  • https://www.mathnet.ru/eng/sigma/v11/p26
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :46
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024