Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2015, Volume 11, 019, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2015.019
(Mi sigma1000)
 

This article is cited in 1 scientific paper (total in 1 paper)

Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities

Dražen Adamovića, Xianzu Linb, Antun Milasc

a Department of Mathematics, University of Zagreb, Bijenicka 30, 10000 Zagreb, Croatia
b College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, China
c Department of Mathematics and Statistics, SUNY-Albany, 1400 Washington Avenue, Albany 12222,USA
Full-text PDF (466 kB) Citations (1)
References:
Abstract: We consider $AD$-type orbifolds of the triplet vertex algebras $\mathcal{W}(p)$ extending the well-known $c=1$ orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras $A(\mathcal{W}(p)^{A_m})$ and $A(\mathcal{W}(p)^{D_m})$, where $A_m$ and $D_m$ are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible $\mathcal{W}(p)^\Gamma$-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of $m$ and $p$ with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$-modules. This paper is a continuation of our previous work on the $ADE$ subalgebras of the triplet vertex algebra $\mathcal{W}(p)$.
Keywords: $C_{2}$-cofiniteness, triplet vertex algebra, orbifold subalgebra, constant term identities.
Received: October 3, 2014; in final form February 25, 2015; Published online March 5, 2015
Bibliographic databases:
Document Type: Article
MSC: 17B69
Language: English
Citation: Dražen Adamović, Xianzu Lin, Antun Milas, “Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities”, SIGMA, 11 (2015), 019, 16 pp.
Citation in format AMSBIB
\Bibitem{AdaLinMil15}
\by Dra{\v z}en~Adamovi{\'c}, Xianzu~Lin, Antun~Milas
\paper Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities
\jour SIGMA
\yr 2015
\vol 11
\papernumber 019
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma1000}
\crossref{https://doi.org/10.3842/SIGMA.2015.019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3322337}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350562100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924429441}
Linking options:
  • https://www.mathnet.ru/eng/sigma1000
  • https://www.mathnet.ru/eng/sigma/v11/p19
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :44
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024