Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1301–1310
DOI: https://doi.org/10.17377/semi.2018.15.106
(Mi semr997)
 

Differentical equations, dynamical systems and optimal control

On local asymptotic stability of a model of epidemic process

V. V. Malyginaa, M. V. Mulyukova, N. V. Pertsevb

a Perm National Research Polytechnic University, Komsomolskiy pr., 29, 614990, Perm, Russia
b Sobolev Institute of Mathematics SB RAS, Omsk Division, Pevtsova street 13, 644033,Omsk, Russia
References:
Abstract: We consider a model of the epidemic process, and use a system of differential equations with retarded argument for the description of the model. We obtain a number of stability tests for the nontrivial equilibrium point and construct stability regions in the parameter space of the original problem.
Keywords: epidemic process, mathematical model, delay differential equation, stability, stability region.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.5336.2017/8.9
Russian Foundation for Basic Research 18-01-00928_а
Siberian Branch of Russian Academy of Sciences I.1.1 (проект № 0314-2016-0009)
Received August 23, 2018, published October 30, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.929
MSC: 34K06,34K20
Language: Russian
Citation: V. V. Malygina, M. V. Mulyukov, N. V. Pertsev, “On local asymptotic stability of a model of epidemic process”, Sib. Èlektron. Mat. Izv., 15 (2018), 1301–1310
Citation in format AMSBIB
\Bibitem{MalMulPer18}
\by V.~V.~Malygina, M.~V.~Mulyukov, N.~V.~Pertsev
\paper On local asymptotic stability of a model of epidemic process
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1301--1310
\mathnet{http://mi.mathnet.ru/semr997}
\crossref{https://doi.org/10.17377/semi.2018.15.106}
Linking options:
  • https://www.mathnet.ru/eng/semr997
  • https://www.mathnet.ru/eng/semr/v15/p1301
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :75
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024