Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1260–1270
DOI: https://doi.org/10.17377/semi.2018.15.102
(Mi semr993)
 

This article is cited in 1 scientific paper (total in 1 paper)

Geometry and topology

On resolvability of Lindelöf generated spaces

M. A. Filatovaab, A. V. Osipovacb

a Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskaya str. 620990, Yekaterinburg, Russia
b Ural Federal University, 19 Mira str., 620002, Yekaterinburg, Russia
c Ural State University of Economics, 62, 8th of March str., 620219, Yekaterinburg, Russia
Full-text PDF (169 kB) Citations (1)
References:
Abstract: In this paper we study the properties of $\mathscr{P}$ generated spaces (by analogy with compactly generated). We prove that a regular Lindelöf generated space with uncountable dispersion character is resolvable. It is proved that Hausdorff hereditarily $L$-spaces are $L$-tight spaces which were defined by István Juhász, Jan van Mill in (Variations on countable tightness, arXiv:1702.03714v1). We also prove $\omega$-resolvability of regular $L$-tight space with uncountable dispersion character.
Keywords: resolvable space, $k$-space, tightness, $\omega$-resolvable space, Lindelöf generated space, $\mathscr{P}$ generated space, $\mathscr{P}$-tightness.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
The work is supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received November 29, 2017, published October 23, 2018
Bibliographic databases:
Document Type: Article
UDC: 515.1
MSC: 54A25
Language: English
Citation: M. A. Filatova, A. V. Osipov, “On resolvability of Lindelöf generated spaces”, Sib. Èlektron. Mat. Izv., 15 (2018), 1260–1270
Citation in format AMSBIB
\Bibitem{FilOsi18}
\by M.~A.~Filatova, A.~V.~Osipov
\paper On resolvability of Lindel\"of generated spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1260--1270
\mathnet{http://mi.mathnet.ru/semr993}
\crossref{https://doi.org/10.17377/semi.2018.15.102}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454860200044}
Linking options:
  • https://www.mathnet.ru/eng/semr993
  • https://www.mathnet.ru/eng/semr/v15/p1260
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :37
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024