Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 1145–1157
DOI: https://doi.org/10.17377/semi.2018.15.093
(Mi semr984)
 

This article is cited in 4 scientific papers (total in 4 papers)

Discrete mathematics and mathematical cybernetics

Counting spanning trees in cobordism of two circulant graphs

N. V. Abrosimovab, G. A. Baigonakovac, I. A. Mednykhab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
c Gorno-Altaysk State University, Socialisticheskaya str., 34, 639000, Gorno-Altaysk, Russia
Full-text PDF (193 kB) Citations (4)
References:
Abstract: We consider a family of graphs $H_n(s_1,\dots,s_k;t_1,\dots,t_\ell)$ that is a generalisation of the family of $I$-graphs, which, in turn, includes the generalized Petersen graphs. We present an explicit formula for the number $\tau(n)$ of spanning trees in these graphs in terms of the Chebyshev polynomials and find its asymptotics. Also, we show that the number of spanning trees can be represented in the form $\tau(n)=p\,n\,a(n)^2,$ where $a(n)$ is an integer sequence and $p$ is a prescribed integer depending on the number of even elements in the sequence $s_1,\dots,s_k,t_1,\dots,t_\ell$ and the parity of $n$.
Keywords: circulant graph, $I$-graph, Petersen graph, spanning tree, Chebyshev polynomial, Mahler measure.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00420_а
18-501-51021_НИФ_а
This work was partially supported by the Russian Foundation for Basic Research (projects 18-01-00420 and 18-501-51021).
Received June 6, 2018, published October 10, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.175.3, 519.172
MSC: 05C30, 39A10
Language: English
Citation: N. V. Abrosimov, G. A. Baigonakova, I. A. Mednykh, “Counting spanning trees in cobordism of two circulant graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 1145–1157
Citation in format AMSBIB
\Bibitem{AbrBaiMed18}
\by N.~V.~Abrosimov, G.~A.~Baigonakova, I.~A.~Mednykh
\paper Counting spanning trees in cobordism of two circulant graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 1145--1157
\mathnet{http://mi.mathnet.ru/semr984}
\crossref{https://doi.org/10.17377/semi.2018.15.093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454860200035}
Linking options:
  • https://www.mathnet.ru/eng/semr984
  • https://www.mathnet.ru/eng/semr/v15/p1145
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :57
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024