Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 741–758
DOI: https://doi.org/10.17377/semi.2018.15.060
(Mi semr976)
 

This article is cited in 9 scientific papers (total in 9 papers)

Geometry and topology

The analytical method for embedding multidimensional pseudo-Euclidean geometries

V. A. Kyrov

Gorno-Altaiisk State University, st. Lenkina, 1, 649000, r. Altai, Gorno-Altaiisk, Russia
Full-text PDF (197 kB) Citations (9)
References:
Abstract: As is known, the geometry of the local maximum mobility is an $n$-dimensional pseudo-Euclidean geometry. In this paper, we find all the $(n+1)$-dimensional geometries of the local maximal mobility whose metric functions contain the metric function of pseudo-Euclidean geometry as an argument. Such geometries are: $(n+1)$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional special extension of $n$-dimensional pseudo-Euclidean geometry, $(n+1)$-dimensional geometry of constant curvature on a pseudo sphere.
Keywords: pseudo-Euclidean geometry, functional equation, differential equation, metric function.
Received February 21, 2018, published July 5, 2018
Bibliographic databases:
Document Type: Article
UDC: 514.74,517.977
MSC: 53D05,39B22
Language: Russian
Citation: V. A. Kyrov, “The analytical method for embedding multidimensional pseudo-Euclidean geometries”, Sib. Èlektron. Mat. Izv., 15 (2018), 741–758
Citation in format AMSBIB
\Bibitem{Kyr18}
\by V.~A.~Kyrov
\paper The analytical method for embedding multidimensional
pseudo-Euclidean geometries
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 741--758
\mathnet{http://mi.mathnet.ru/semr976}
\crossref{https://doi.org/10.17377/semi.2018.15.060}
Linking options:
  • https://www.mathnet.ru/eng/semr976
  • https://www.mathnet.ru/eng/semr/v15/p741
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024