Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 987–995
DOI: https://doi.org/10.17377/semi.2018.15.083
(Mi semr973)
 

This article is cited in 8 scientific papers (total in 8 papers)

Mathematical logic, algebra and number theory

On the complexity of formulas in semantic programming

S. Ospichevab, D. Ponomarevabc

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
c A.P. Ershov Institute of Informatics Systems, pr. Lavrentyeva, 6, 630090, Novosibirsk, Russia
Full-text PDF (150 kB) Citations (8)
References:
Abstract: We consider the complexity of $\Delta_0$ formulas augmented with conditional terms. We show that for formulas having $n$ bounded quantifiers, for a fixed $n$, deciding the truth in a list superstructure with polynomial computable basic operations is of polynomial complexity. When the quantifier prefix has $n$ alternations of quantifiers, the truth problem is complete for the $n$-th level of the polynomial-time hierarchy. Under no restrictions on the quantifier prefix the truth problem is PSPACE-complete. Thus, the complexity results indicate the analogy between the truth problem for $\Delta_0$ formulas with conditional terms and the truth problem for quantified boolean formulas.
Keywords: semantic programming, list structures, polynomial time/space complexity, $\Delta_0$-formulas.
Funding agency Grant number
Russian Science Foundation 17-11-01176
The authors were supported by the Russian Science Foundation (Grant No. 17-11-01176).
Received June 28, 2018, published September 10, 2018
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D15, 68Q15
Language: English
Citation: S. Ospichev, D. Ponomarev, “On the complexity of formulas in semantic programming”, Sib. Èlektron. Mat. Izv., 15 (2018), 987–995
Citation in format AMSBIB
\Bibitem{OspPon18}
\by S.~Ospichev, D.~Ponomarev
\paper On the complexity of formulas in semantic programming
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 987--995
\mathnet{http://mi.mathnet.ru/semr973}
\crossref{https://doi.org/10.17377/semi.2018.15.083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454860200025}
Linking options:
  • https://www.mathnet.ru/eng/semr973
  • https://www.mathnet.ru/eng/semr/v15/p987
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :71
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024