Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 971–986
DOI: https://doi.org/10.17377/semi.2018.15.082
(Mi semr972)
 

Differentical equations, dynamical systems and optimal control

Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations

D. A. Zakoraab

a Voronezh State University, University Sq., 1, 394006, Voronezh, Russia
b Crimean Federal University, Academican Vernadsky Ave., 4, 295007, Simferopol, Russia
References:
Abstract: In this paper, we consider a system of connected incomplete second-order integro-differential operator equations. The sufficient conditions for exponential stability of this system are given. In the case where the external forces are of special type an asymptotic behavior of solutions to this system is proven.
Keywords: integro-differential equation, exponential stability, asymptotics.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
Received January 27, 2018, published August 28, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
MSC: 45J05, 34K30
Language: Russian
Citation: D. A. Zakora, “Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations”, Sib. Èlektron. Mat. Izv., 15 (2018), 971–986
Citation in format AMSBIB
\Bibitem{Zak18}
\by D.~A.~Zakora
\paper Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 971--986
\mathnet{http://mi.mathnet.ru/semr972}
\crossref{https://doi.org/10.17377/semi.2018.15.082}
Linking options:
  • https://www.mathnet.ru/eng/semr972
  • https://www.mathnet.ru/eng/semr/v15/p971
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :59
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024