Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 890–893
DOI: https://doi.org/10.17377/semi.2018.15.076
(Mi semr963)
 

Geometry and topology

On a problem in the bendings theory of negatively curved surfaces

I. Kh. Sabitov

Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia
References:
Abstract: We show that for negatively curved surfaces one can have the following phenomenon: there exist two non-congruent isometric surfaces with a common open set.
Keywords: isometry, surfaces with negative curvature, common open domains.
Received May 3, 2018, published August 17, 2018
Bibliographic databases:
Document Type: Article
UDC: 514.772.35
MSC: 53C
Language: Russian
Citation: I. Kh. Sabitov, “On a problem in the bendings theory of negatively curved surfaces”, Sib. Èlektron. Mat. Izv., 15 (2018), 890–893
Citation in format AMSBIB
\Bibitem{Sab18}
\by I.~Kh.~Sabitov
\paper On a problem in the bendings theory of negatively curved surfaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 890--893
\mathnet{http://mi.mathnet.ru/semr963}
\crossref{https://doi.org/10.17377/semi.2018.15.076}
Linking options:
  • https://www.mathnet.ru/eng/semr963
  • https://www.mathnet.ru/eng/semr/v15/p890
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024