Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 844–852
DOI: https://doi.org/10.17377/semi.2018.15.072
(Mi semr959)
 

This article is cited in 5 scientific papers (total in 5 papers)

Discrete mathematics and mathematical cybernetics

On the shortest sequences of elementary transformations in the partition lattice

V. A. Baransky, T. A. Senchonok

Ural Federal University, pr. Lenina, 51, 620083, Ekaterinburg, Russia
Full-text PDF (563 kB) Citations (5)
References:
Abstract: A partition $\lambda= (\lambda_1, \lambda_2, \dots)$ is a sequence of non-negative integers (the parts) in non-increasing order $\lambda_1\geq\lambda_2\geq\dots$ with a finite number of non-zero elements. A weight of $\lambda$ is the sum of parts, denoted by $\mathrm{sum}(\lambda)$. We define two types of elementary transformations of the partition lattice $NPL$. The first one is a box transference, the second one is a box destroying. Note that a partition $\lambda= (\lambda_1, \lambda_2, \dots)$ dominates a partition $\mu= (\mu_1, \mu_2, \dots)$, denoted by $\lambda\geq\mu$, iff $\mu$ is obtained from $\lambda$ by a finite sequence of elementary transformations.
Let $\lambda$ and $\mu$ be two partitions such that $\lambda\geq\mu$. The height of $\lambda$ over $\mu$ is the number of transformations in a shortest sequence of elementary transformations which transforms $\lambda$ to $\mu$, denoted by $\mathrm{height}(\lambda, \mu)$. The aim is to prove that
$$\mathrm{height}(\lambda,\mu)= \sum^\infty_{j=1,\lambda_j>\mu_j}(\lambda_j-\mu_j)= \frac{1}{2}C+\frac{1}{2}\sum^\infty_{j=1}|\lambda_j-\mu_j|,$$
where $C=\mathrm{sum}(\lambda)-\mathrm{sum}(\mu)$. Also we found an algorithm that builds some useful shortest sequences of elementary transformations from $\lambda$ to $\mu$.
Keywords: integer partition, lattice, Ferrer's diagram.
Received June 20, 2018, published August 14, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.165
MSC: 05A17
Language: Russian
Citation: V. A. Baransky, T. A. Senchonok, “On the shortest sequences of elementary transformations in the partition lattice”, Sib. Èlektron. Mat. Izv., 15 (2018), 844–852
Citation in format AMSBIB
\Bibitem{BarSen18}
\by V.~A.~Baransky, T.~A.~Senchonok
\paper On the shortest sequences of elementary transformations in the partition lattice
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 844--852
\mathnet{http://mi.mathnet.ru/semr959}
\crossref{https://doi.org/10.17377/semi.2018.15.072}
Linking options:
  • https://www.mathnet.ru/eng/semr959
  • https://www.mathnet.ru/eng/semr/v15/p844
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :52
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024