Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 797–800
DOI: https://doi.org/10.17377/semi.2018.15.065
(Mi semr953)
 

Mathematical logic, algebra and number theory

On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$

A. V. Konyginab

a N.N. Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskaya Str., 620990, Ekaterinburg, Russia
b Ural State University, 19 Mira Str., 620002, Ekaterinburg, Russia
References:
Abstract: Let $p \geq 7$ be a prime, $q = p^n$, where $n \in {\mathbb N}$, and $k$ be the algebraic closure of the field $\mathbb{F}_q$. Let $G \cong E_8(k)$ be a simple linear algebraic group of type $E_8$ over the field $k$, and $\sigma : G \rightarrow G$ be a Steinberg endomorphism of $G$ such that $G_{\sigma} \cong E_8(q)$. Let $M \cong (\mathrm{Alt}_5 \times \mathrm{Sym}_6).2$ be a Borovik subgroup of the group $G$ and $M < G_{\sigma}$. An open question is whether the normal $\mathrm{Alt}_5$-subgroup of $M$ and a diagonal $\mathrm{Alt}_5$-subgroup of $\mathrm{soc}(M)$ are conjugated in $G_\sigma$ or not.
In 1998, D. Frey investigated conjugated classes of $\mathrm{Alt}_5$-subgroups in $E_8(\mathbb{C})$. But, description of the classes with zero-dimensional centralizers was not obtained. In particular, it was not clear are $\mathrm{Alt}_5$-subgroups of a Borovik subgroup of $E_8(\mathbb{C})$ with zero-dimensional centralizers conjugated in $E_8(\mathbb{C})$ or not. This problem was solved by G. Lusztig in 2003. Actually, the Lusztig result is more general and concerns regular homorphisms from $\mathrm{Alt}_5$ to connected reductive algebraic group over an algebraically closed field $k'$ of characteristic $p$ where $p=0$ or $p \geq 7$. The Lusztig result implies, in particular, that $\mathrm{Alt}_5$-subgroups of a Borovik subgroup of $E_8(k')$ with zero-dimensional centralizers are conjugated in $E_8(k')$. We use the Lusztig result to prove that the normal $\mathrm{Alt}_5$-subgroup of the group $M$ is conjugated with a diagonal $\mathrm{Alt}_5$-subgroup of $\mathrm{soc}\,(M)$ in $G_{\sigma^m}$ where $m \leq 6$.
Keywords: $E_8(q)$, Borovik subgroup, subgroup $\mathrm{Alt}_5$, conjugated class.
Received January 20, 2018, published July 27, 2018
Bibliographic databases:
Document Type: Article
UDC: 512.542.52
MSC: 20D05
Language: Russian
Citation: A. V. Konygin, “On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$”, Sib. Èlektron. Mat. Izv., 15 (2018), 797–800
Citation in format AMSBIB
\Bibitem{Kon18}
\by A.~V.~Konygin
\paper On conjugacy of $\mathrm{Alt}_5$-subgroups of Borovik subgroup of group $E_8(q)$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 797--800
\mathnet{http://mi.mathnet.ru/semr953}
\crossref{https://doi.org/10.17377/semi.2018.15.065}
Linking options:
  • https://www.mathnet.ru/eng/semr953
  • https://www.mathnet.ru/eng/semr/v15/p797
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :44
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024