Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 719–727
DOI: https://doi.org/10.17377/semi.2018.15.057
(Mi semr948)
 

Mathematical logic, algebra and number theory

Finding $2^{\aleph_0}$ countable models for ordered theories

B. Baizhanova, J. T. Baldwinb, T. Zambarnayaca

a Institute of Mathematics and Mathematical Modeling, 125 Pushkin St., 050010, Almaty, Kazakhstan
b University of Illinois at Chicago, 1200 West Harrison St., 60607, Chicago, Illinois
c Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Kazakhstan
Full-text PDF (163 kB) Citations (1)
References:
Abstract: The article is focused on finding conditions that imply small theories of linear order have the maximum number of countable non-isomorphic models. We introduce the notion of extreme triviality of non-principal types, and prove that a theory of order, which has such a type, has $2^{\aleph_0}$ countable non-isomorphic models.
Keywords: countable model, linear order, omitting types.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05134992
The work is financially supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant AP05134992).
Received May 11, 2018, published June 14, 2018
Bibliographic databases:
Document Type: Article
UDC: 510.67
MSC: 03C15, 03C64
Language: English
Citation: B. Baizhanov, J. T. Baldwin, T. Zambarnaya, “Finding $2^{\aleph_0}$ countable models for ordered theories”, Sib. Èlektron. Mat. Izv., 15 (2018), 719–727
Citation in format AMSBIB
\Bibitem{BaiBalZam18}
\by B.~Baizhanov, J.~T.~Baldwin, T.~Zambarnaya
\paper Finding $2^{\aleph_0}$ countable models for ordered theories
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 719--727
\mathnet{http://mi.mathnet.ru/semr948}
\crossref{https://doi.org/10.17377/semi.2018.15.057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200057}
Linking options:
  • https://www.mathnet.ru/eng/semr948
  • https://www.mathnet.ru/eng/semr/v15/p719
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :65
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024