Loading [MathJax]/jax/output/CommonHTML/config.js
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 696–706
DOI: https://doi.org/10.17377/semi.2018.15.055
(Mi semr946)
 

This article is cited in 5 scientific papers (total in 5 papers)

Differentical equations, dynamical systems and optimal control

Cauchy problem for high even order parabolic equation with time fractional derivative

L. L. Karasheva

Institute of Applied Mathematics and Automation of KBSC RAS, Shortanova str., 89-A, 360000, Nalchik, Russia
Full-text PDF (173 kB) Citations (5)
References:
Abstract: In the paper, we construct a fundamental solution for a higher order parabolic equation with time-fractional derivative and study its properties. We solve the Cauchy problem for the equation under study and prove a uniqueness theorem in the class of fast-growing functions.
Keywords: fundamental solution, Riemann–Liouville fractional derivative, Cauchy problem, high order equation.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00462_а
Received December 1, 2017, published June 11, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35K25
Language: Russian
Citation: L. L. Karasheva, “Cauchy problem for high even order parabolic equation with time fractional derivative”, Sib. Èlektron. Mat. Izv., 15 (2018), 696–706
Citation in format AMSBIB
\Bibitem{Kar18}
\by L.~L.~Karasheva
\paper Cauchy problem for high even order parabolic equation with time fractional derivative
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 696--706
\mathnet{http://mi.mathnet.ru/semr946}
\crossref{https://doi.org/10.17377/semi.2018.15.055}
Linking options:
  • https://www.mathnet.ru/eng/semr946
  • https://www.mathnet.ru/eng/semr/v15/p696
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :102
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025