Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 554–560
DOI: https://doi.org/10.17377/semi.2018.15.044
(Mi semr935)
 

Mathematical logic, algebra and number theory

Subextensions for co-induced modules

Andrei V. Zavarnitsine

Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia
References:
Abstract: Using cohomological methods, we find a criterion for the embedding of a group extension with abelian kernel into the split extension of a co-induced module. This generalises some earlier similar results. We also prove an assertion about the conjugacy of complements in split extensions of co-induced modules. Both results follow from a relation between homomorphisms of certain cohomology groups.
Keywords: subextension, co-induced module, group cohomology.
Funding agency Grant number
Russian Science Foundation 14-21-00065
This research is supported by RSF (project 14-21-00065).
Received October 20, 2017, published May 11, 2018
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20D99
Language: English
Citation: Andrei V. Zavarnitsine, “Subextensions for co-induced modules”, Sib. Èlektron. Mat. Izv., 15 (2018), 554–560
Citation in format AMSBIB
\Bibitem{Zav18}
\by Andrei~V.~Zavarnitsine
\paper Subextensions for co-induced modules
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 554--560
\mathnet{http://mi.mathnet.ru/semr935}
\crossref{https://doi.org/10.17377/semi.2018.15.044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200044}
Linking options:
  • https://www.mathnet.ru/eng/semr935
  • https://www.mathnet.ru/eng/semr/v15/p554
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024