Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 412–421
DOI: https://doi.org/10.17377/semi.2018.15.037
(Mi semr928)
 

This article is cited in 4 scientific papers (total in 4 papers)

Real, complex and functional analysis

On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation

A. F. Voronin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (526 kB) Citations (4)
References:
Abstract: In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ${\mathbb R}$-linear problem) and convolution equation of the second kind on a finite interval.
Keywords: ${\mathbb R}$-linear problem, problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability, unique, convolution equation.
Received March 4, 2018, published April 23, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.544
MSC: 47A68
Language: Russian
Citation: A. F. Voronin, “On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 412–421
Citation in format AMSBIB
\Bibitem{Vor18}
\by A.~F.~Voronin
\paper On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 412--421
\mathnet{http://mi.mathnet.ru/semr928}
\crossref{https://doi.org/10.17377/semi.2018.15.037}
Linking options:
  • https://www.mathnet.ru/eng/semr928
  • https://www.mathnet.ru/eng/semr/v15/p412
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024