Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 397–411
DOI: https://doi.org/10.17377/semi.2018.15.036
(Mi semr927)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

Abelian Schur groups of odd order

I. N. Ponomarenkoab, G. K. Ryabovcd

a St.Petersburg State University, Universitetskaya Emb., 13B, 199034, St. Petersburg, Russia
b St. Petersburg Department of the Steklov Mathematical Institute, Fontanka, 27, 191023, St. Petersburg, Russia
c Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
d Novosibirsk State University, Pirogova, 1, 630090, Novosibirsk, Russia
Full-text PDF (178 kB) Citations (3)
References:
Abstract: A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{sym}\,(G)$ that contains all right translations. It is proved that the group $C_3\times C_3\times C_p$ is Schur for any prime $p$. Together with earlier results, this completes a classification of the abelian Schur groups of odd order.
Keywords: Schur rings, Schur groups, permutation groups.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-53007_GFEN_a
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
Russian Science Foundation 14-21-00065
The work of the first author was supported by the RFBR Grant No. 17-51-53007 GFEN a and by the Program of the Presidium of the Russian Academy of Sciences No. 01 ’Fundamental Mathematics and its Applications’ under grant PRAS-18-01. The second author was supported by RSF (project No. 14-21-00065).
Received November 8, 2017, published April 19, 2018
Bibliographic databases:
Document Type: Article
UDC: 512.542.3
MSC: 20B30, 05E30
Language: English
Citation: I. N. Ponomarenko, G. K. Ryabov, “Abelian Schur groups of odd order”, Sib. Èlektron. Mat. Izv., 15 (2018), 397–411
Citation in format AMSBIB
\Bibitem{PonRya18}
\by I.~N.~Ponomarenko, G.~K.~Ryabov
\paper Abelian Schur groups of odd order
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 397--411
\mathnet{http://mi.mathnet.ru/semr927}
\crossref{https://doi.org/10.17377/semi.2018.15.036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200036}
Linking options:
  • https://www.mathnet.ru/eng/semr927
  • https://www.mathnet.ru/eng/semr/v15/p397
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :46
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024