Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 355–361
DOI: https://doi.org/10.17377/semi.2018.15.032
(Mi semr923)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real, complex and functional analysis

Some problems of regularity of $f$-quasimetrics

A. V. Greshnovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 1, 630090, Novosibirsk, Russia
Full-text PDF (154 kB) Citations (1)
References:
Abstract: We get a new proof for validity of $T_4$-axiom of separation for weak symmetric $f$-quasimetric spaces. Using this proof we get $T_4$-property for more general classes of $f$-quasimetric spaces. We construct the symmetric $(q,q)$-quasimetric space $(X,d)$ such that distance function $d(u,v)$ is continuous to each variables but $\lim\limits_{n\to\infty}(\rho(x_0,x_n)+\rho(y_0,y_n))=0\nRightarrow\lim\limits_{n\to \infty}\rho(x_n,y_n)=\rho(x_0,y_0)$.
Keywords: distance function, $f$-quasimetric, open set, interior and closure of a set, weak symmetry, separation axioms, convergence.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.2, проект № 0314-2016-0006
Received November 25, 2017, published April 6, 2018
Bibliographic databases:
Document Type: Article
UDC: 515.124.2
MSC: 30L99, 53C23, 54D10
Language: Russian
Citation: A. V. Greshnov, “Some problems of regularity of $f$-quasimetrics”, Sib. Èlektron. Mat. Izv., 15 (2018), 355–361
Citation in format AMSBIB
\Bibitem{Gre18}
\by A.~V.~Greshnov
\paper Some problems of regularity of $f$-quasimetrics
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 355--361
\mathnet{http://mi.mathnet.ru/semr923}
\crossref{https://doi.org/10.17377/semi.2018.15.032}
Linking options:
  • https://www.mathnet.ru/eng/semr923
  • https://www.mathnet.ru/eng/semr/v15/p355
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024