Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 305–313
DOI: https://doi.org/10.17377/semi.2018.15.027
(Mi semr918)
 

Mathematical logic, algebra and number theory

On new examples of hypocritical groups

S. V. Skresanov

Novosibirsk State University, ul. Pirogova, 2, 630090, Novosibirsk, Russia
References:
Abstract: A group $ G $ is called hypocritical if whenever $ G $ lies in a locally finite variety generated by a section closed class of groups $ \mathfrak{X} $, then $ G $ belongs to $ \mathfrak{X} $. We prove that some coprime extensions of a $ p $-group are hypocritical. The first example is given when such a $ p $-group is nonabelian.
Keywords: locally finite varieties, finite groups, extraspecial $ p $-groups.
Funding agency Grant number
Russian Science Foundation 14-21-00065
The work is supported by Russian Science Foundation (project 14-21-00065).
Received January 1, 2017, published March 21, 2018
Bibliographic databases:
Document Type: Article
UDC: 512.542, 512.544.5
MSC: 20D99, 20F50
Language: English
Citation: S. V. Skresanov, “On new examples of hypocritical groups”, Sib. Èlektron. Mat. Izv., 15 (2018), 305–313
Citation in format AMSBIB
\Bibitem{Skr18}
\by S.~V.~Skresanov
\paper On new examples of hypocritical groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 305--313
\mathnet{http://mi.mathnet.ru/semr918}
\crossref{https://doi.org/10.17377/semi.2018.15.027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200027}
Linking options:
  • https://www.mathnet.ru/eng/semr918
  • https://www.mathnet.ru/eng/semr/v15/p305
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :46
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024