Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 258–266
DOI: https://doi.org/10.17377/semi.2018.15.024
(Mi semr915)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete mathematics and mathematical cybernetics

On the minimum supports of some eigenfunctions in the Doob graphs

E. A. Bespalov

Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
Full-text PDF (193 kB) Citations (3)
References:
Abstract: We prove that the minimum size of the support of an eigenfunction in the Doob graph $D(m,n)$ corresponding to the second largest eigenvalue is $6 \cdot 4^{2m+n-2}$, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size $2^{2m+n}$, are obtained for the minimum eigenvalue of $D(m,n)$.
Keywords: eigenfunction, minimum support, Doob graph.
Received December 28, 2017, published March 19, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.1
MSC: 05B30
Language: English
Citation: E. A. Bespalov, “On the minimum supports of some eigenfunctions in the Doob graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 258–266
Citation in format AMSBIB
\Bibitem{Bes18}
\by E.~A.~Bespalov
\paper On the minimum supports of some eigenfunctions in the Doob graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 258--266
\mathnet{http://mi.mathnet.ru/semr915}
\crossref{https://doi.org/10.17377/semi.2018.15.024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200024}
Linking options:
  • https://www.mathnet.ru/eng/semr915
  • https://www.mathnet.ru/eng/semr/v15/p258
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :75
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024