Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 246–257
DOI: https://doi.org/10.17377/semi.2018.15.023
(Mi semr914)
 

This article is cited in 1 scientific paper (total in 1 paper)

Real, complex and functional analysis

The coefficient of quasimöbiusness in Ptolemaic spaces

V. V. Aseev

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (173 kB) Citations (1)
References:
Abstract: In ptolemaic spaces the class of $\eta$-quasimöbius mappings $f: X\to Y$ with control function $\eta(t)= C \max\{ t^{\alpha}, t^{1/\alpha}\}$ may be completely characterized by the inequality $ K^{-1}\leq (1 + \log P(fT))/(1+ \log P(T)) \leq K$ for all tetrads $T\subset X$ where $P(T)$ denotes the ptolemaic characteristic of a tetrad. The number $K$ has properties quite similar to those of coefficients of quasiconformality, so the concept of $K$-quasimöbius mapping may be introduced. In particular, the stability theorem is proved for $(1+\varepsilon)$-quasimöbius mappings in $\bar{R}^n$.
Keywords: ptolemaic space, Möbius mapping, quasimöbius mapping, (power) quasimöbius mapping, quasisymmetric mapping, stability theorem.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 1.1.2, project No. 0314-2016-0007
The work is supported by the program of fundamental scientific researches of the SB RAS No. 1.1.2., project No. 0314-2016-0007.
Received June 28, 2017, published March 16, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30C65
Language: English
Citation: V. V. Aseev, “The coefficient of quasimöbiusness in Ptolemaic spaces”, Sib. Èlektron. Mat. Izv., 15 (2018), 246–257
Citation in format AMSBIB
\Bibitem{Ase18}
\by V.~V.~Aseev
\paper The coefficient of quasim\"obiusness in Ptolemaic spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 246--257
\mathnet{http://mi.mathnet.ru/semr914}
\crossref{https://doi.org/10.17377/semi.2018.15.023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200023}
Linking options:
  • https://www.mathnet.ru/eng/semr914
  • https://www.mathnet.ru/eng/semr/v15/p246
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :48
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024