Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 153–166
DOI: https://doi.org/10.17377/semi.2018.15.015
(Mi semr906)
 

This article is cited in 11 scientific papers (total in 11 papers)

Differentical equations, dynamical systems and optimal control

On modeling elastic bodies with defects

A. M. Khludnevab

a Lavrentyev Institute of Hydrodynamics of SB RAS pr. Lavrentieva, 15, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 1, 630090, Novosibirsk, Russia
References:
Abstract: The paper concerns a mathematical analysis of equilibrium problems for 2D elastic bodies with thin defects. The defects are characterized with a damage parameter. A presence of defects implies that the problems are formulated in a nonsmooth domain with a cut. Nonlinear boundary conditions at the cut faces are considered to prevent a mutual penetration between the faces. Weak and strong formulations of the problems are analyzed. The paper provides an asymptotic analysis with respect to the damage parameter. We obtain invariant integrals over curves surrounding the defect tip. An optimal control problem is investigated with a cost functional equal to the derivative of the energy functional with respect to the defect length, and the damage parameter being a control function.
Keywords: defect, damage parameter, non-penetration boundary conditions, variational inequality, optimal control, derivative of energy functional.
Received December 29, 2017, published February 15, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.958,539.3
MSC: 35Q74,35Q93
Language: English
Citation: A. M. Khludnev, “On modeling elastic bodies with defects”, Sib. Èlektron. Mat. Izv., 15 (2018), 153–166
Citation in format AMSBIB
\Bibitem{Khl18}
\by A.~M.~Khludnev
\paper On modeling elastic bodies with defects
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 153--166
\mathnet{http://mi.mathnet.ru/semr906}
\crossref{https://doi.org/10.17377/semi.2018.15.015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438412200015}
Linking options:
  • https://www.mathnet.ru/eng/semr906
  • https://www.mathnet.ru/eng/semr/v15/p153
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :106
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024