Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 42–50 (Mi semr90)  

Research papers

On group-theoretical properties of equation of dynamics of microsrtuctures

N. V. Lyubashevskaya

Novosibirsk State University
References:
Abstract: We discuss group-theoretical properties of equation describing formation and evolution of defects in microstructures. Invariant solutions of equation are obtained by optimal system of subalgebras of Lie algebra permissible by considering equation. It is shown that optimal system consists of $3$ one-dimensional subalgebras, $13$ two-dimensional subalgebras, $7$ tree-dimensional subalgebras. Each representative of optimal system generates invariant solution of rang $3$, $2$ or $1$ with corresponding number of independent variables. All factor equations describing invariant solutions of considering equation are constructed.
Received January 9, 2008, published March 10, 2008
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 22E67, 35Q99
Language: Russian
Citation: N. V. Lyubashevskaya, “On group-theoretical properties of equation of dynamics of microsrtuctures”, Sib. Èlektron. Mat. Izv., 5 (2008), 42–50
Citation in format AMSBIB
\Bibitem{Lyu08}
\by N.~V.~Lyubashevskaya
\paper On group-theoretical properties of equation of dynamics of microsrtuctures
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 42--50
\mathnet{http://mi.mathnet.ru/semr90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586621}
Linking options:
  • https://www.mathnet.ru/eng/semr90
  • https://www.mathnet.ru/eng/semr/v5/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024