Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2018, Volume 15, Pages 48–53
DOI: https://doi.org/10.17377/semi.2018.15.006
(Mi semr897)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differentical equations, dynamical systems and optimal control

Inverse problem of chemical kinetics as a composition of binary correspondences

A. E. Gutmanab, L. I. Kononenkoab

a Sobolev Institute of Mathematics, Academician Koptyug av., 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
Full-text PDF (139 kB) Citations (2)
References:
Abstract: Binary correspondences are employed for formalization of the notion of problem, definition of the basic components of problems, their properties, and constructions (the condition of a problem, its data and unknowns, solvability and unique solvability of a problem, inverse problem, and composition of problems). As an illustration, we consider a system of differential equations which describe a process in chemical kinetics. Within the study of the inverse problem, a criterion is established for linear independence of functions in terms of finite sets of their values.
Keywords: Differential equation, chemical kinetics, inverse problem, linear independence, binary correspondence, solvability, composition.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00057
Received December 4, 2017, published January 26, 2018
Bibliographic databases:
Document Type: Article
UDC: 541.124+517.9
MSC: 92E20, 34A55
Language: Russian
Citation: A. E. Gutman, L. I. Kononenko, “Inverse problem of chemical kinetics as a composition of binary correspondences”, Sib. Èlektron. Mat. Izv., 15 (2018), 48–53
Citation in format AMSBIB
\Bibitem{GutKon18}
\by A.~E.~Gutman, L.~I.~Kononenko
\paper Inverse problem of chemical kinetics as a composition of binary correspondences
\jour Sib. \`Elektron. Mat. Izv.
\yr 2018
\vol 15
\pages 48--53
\mathnet{http://mi.mathnet.ru/semr897}
\crossref{https://doi.org/10.17377/semi.2018.15.006}
Linking options:
  • https://www.mathnet.ru/eng/semr897
  • https://www.mathnet.ru/eng/semr/v15/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :82
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024