Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1492–1504
DOI: https://doi.org/10.17377/semi.2017.14.129
(Mi semr888)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics and mathematical cybernetics

About chromatic uniqueness of some complete tripartite graphs

P. A. Gein

Ural Federal University, pr. Lenina, 51, 62083, Ekaterinburg, Russia
Full-text PDF (653 kB) Citations (2)
References:
Abstract: Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(n_1, n_2, n_3)$ is chromatically unique if $n_1 \geq n_2 \geq n_2 \geq n_3, n_1 - n_3 \leq$ and $n_1 + n_2 + n_3 \not \equiv 2 \mod{3}$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
Received October 22, 2017, published December 29, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.174
MSC: 05C15
Language: Russian
Citation: P. A. Gein, “About chromatic uniqueness of some complete tripartite graphs”, Sib. Èlektron. Mat. Izv., 14 (2017), 1492–1504
Citation in format AMSBIB
\Bibitem{Gei17}
\by P.~A.~Gein
\paper About chromatic uniqueness of some complete tripartite graphs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1492--1504
\mathnet{http://mi.mathnet.ru/semr888}
\crossref{https://doi.org/10.17377/semi.2017.14.129}
Linking options:
  • https://www.mathnet.ru/eng/semr888
  • https://www.mathnet.ru/eng/semr/v14/p1492
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :30
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024