Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1472–1479
DOI: https://doi.org/10.17377/semi.2017.14.127
(Mi semr886)
 

This article is cited in 2 scientific papers (total in 2 papers)

Geometry and topology

In equivalence of same knots in the thickened Klein bottle

L. R. Nabeeva

Chelyabinsk State University, 129 Bratiev Kashirinykh st. 454001, Chelyabinsk, Russia
Full-text PDF (388 kB) Citations (2)
References:
Abstract: The history of knot tabulation is long established, having begun over 130 years ago. In 2016 S. Matveev and the author generated a complete list of 33 knots in the thickened Klein bottle whose minimal diagrams have at most 3 crossings. By using the generalized Kauffman bracket polynomial in four variables it was established that the list contains at least 28 different knots. In the paper identifying all duplicates we prove that the list contains exactly 28 knots.
Keywords: knot (links) in the thickened Klein bottle, knot diagram, transformations diagrams.
Funding agency Grant number
Russian Science Foundation 16-11-10291
Received December 5, 2017, published December 15, 2017
Bibliographic databases:
Document Type: Article
UDC: 515.162.3
MSC: 57M27
Language: Russian
Citation: L. R. Nabeeva, “In equivalence of same knots in the thickened Klein bottle”, Sib. Èlektron. Mat. Izv., 14 (2017), 1472–1479
Citation in format AMSBIB
\Bibitem{Nab17}
\by L.~R.~Nabeeva
\paper In equivalence of same knots in the thickened Klein bottle
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1472--1479
\mathnet{http://mi.mathnet.ru/semr886}
\crossref{https://doi.org/10.17377/semi.2017.14.127}
Linking options:
  • https://www.mathnet.ru/eng/semr886
  • https://www.mathnet.ru/eng/semr/v14/p1472
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :43
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024