Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1440–1446
DOI: https://doi.org/10.17377/semi.2017.14.123
(Mi semr882)
 

This article is cited in 2 scientific papers (total in 2 papers)

Geometry and topology

Group structures of a function spaces with the set-open topology

A. V. Osipovabc

a Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., 620990, Yekaterinburg, Russia
b Ural Federal University, 19 Mira str., 620002, Yekaterinburg, Russia
c Ural State University of Economics, 62, 8th of March str., 620219, Yekaterinburg, Russia
Full-text PDF (131 kB) Citations (2)
References:
Abstract: In this paper, we find at the properties of the family $\lambda$ which imply that the space $C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings on a Tychonoff space $X$ to the space $\mathbb{R}^{\alpha}$ with the $\lambda$-open topology is a semitopological group (paratopological group, topological group, topological vector space and other algebraic structures) under the usual operations of addition and multiplication (and multiplication by scalars). For example, if $X=[0,\omega_1)$ and $\lambda$ is a family of $C$-compact subsets of $X$, then $C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group (locally convex topological vector space, topological algebra), but $C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological group.
Keywords: set-open topology, topological group, $C$-compact subset, semitopological group, paratopological group, topological vector space, $C_{\alpha}$-compact subset, topological algebra.
Received October 22, 2017, published December 13, 2017
Bibliographic databases:
Document Type: Article
UDC: 515.122.55, 515.122.4, 512.546.1
Language: English
Citation: A. V. Osipov, “Group structures of a function spaces with the set-open topology”, Sib. Èlektron. Mat. Izv., 14 (2017), 1440–1446
Citation in format AMSBIB
\Bibitem{Osi17}
\by A.~V.~Osipov
\paper Group structures of a function spaces with the set-open topology
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1440--1446
\mathnet{http://mi.mathnet.ru/semr882}
\crossref{https://doi.org/10.17377/semi.2017.14.123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454861900054}
Linking options:
  • https://www.mathnet.ru/eng/semr882
  • https://www.mathnet.ru/eng/semr/v14/p1440
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :46
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024