Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1380–1412
DOI: https://doi.org/10.17377/semi.2017.14.119
(Mi semr878)
 

Geometry and topology

The properties of mosaic pentagons with a pair of equal adjacent edges

O. G. Bagina

Kemerovo State University, Krasnaya Street, 6, 650043, Kemerovo, Russia
References:
Abstract: It was obtained by O.G. Bagina the complete classification of convex mosaic pentagons, admitting normal (edge to edge) tilings, in 2011–2012. The classification includes 8 types of such pentagons. In the proof of the completeness of this list the following fact was used. If a convex pentagon tiles the plane normally, belongs only the first type of the list and has only a pair of equal adjacent edges, that is, the angles and edges of this pentagon satisfy the relations $C_0 = C_1, x_2 + x_3 = 180^\circ$, then it angles satisfy also the relation $x_0 + 2x_1 = 360^\circ$. But this statement has not been proven. This paper fills this gap.
Keywords: convex pentagon, mosaic pentagon, tiling the plane, normal tiling.
Received December 9, 2016, published December 8, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.148
MSC: 52C15
Language: Russian
Citation: O. G. Bagina, “The properties of mosaic pentagons with a pair of equal adjacent edges”, Sib. Èlektron. Mat. Izv., 14 (2017), 1380–1412
Citation in format AMSBIB
\Bibitem{Bag17}
\by O.~G.~Bagina
\paper The properties of mosaic pentagons with a pair of equal adjacent edges
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1380--1412
\mathnet{http://mi.mathnet.ru/semr878}
\crossref{https://doi.org/10.17377/semi.2017.14.119}
Linking options:
  • https://www.mathnet.ru/eng/semr878
  • https://www.mathnet.ru/eng/semr/v14/p1380
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024