Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1289–1298
DOI: https://doi.org/10.17377/semi.2017.14.109
(Mi semr868)
 

This article is cited in 2 scientific papers (total in 2 papers)

Probability theory and mathematical statistics

Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails

M. G. Chebunin

Novosibirsk State University, str. Pirogova, 2, 630090, Novosibirsk, Russia
Full-text PDF (162 kB) Citations (2)
References:
Abstract: We study a vector process of a number of urns with fixed quantities of balls in an infinite urn scheme. We assume that probabilities of entering an urn change regularly with exponent minus one. We prove a multidimensional functional central limit theorem for this process.
Keywords: infinite urn scheme; relative compactness; slow variation; functional central limit theorem.
Funding agency Grant number
Russian Science Foundation 17-11-01173
Received November 10, 2017, published December 1, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.214.5
MSC: 60F17
Language: Russian
Citation: M. G. Chebunin, “Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails”, Sib. Èlektron. Mat. Izv., 14 (2017), 1289–1298
Citation in format AMSBIB
\Bibitem{Che17}
\by M.~G.~Chebunin
\paper Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1289--1298
\mathnet{http://mi.mathnet.ru/semr868}
\crossref{https://doi.org/10.17377/semi.2017.14.109}
Linking options:
  • https://www.mathnet.ru/eng/semr868
  • https://www.mathnet.ru/eng/semr/v14/p1289
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :62
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024