Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1207–1214
DOI: https://doi.org/10.17377/semi.2017.14.102
(Mi semr861)
 

Probability theory and mathematical statistics

Normality tests for very small sample sizes

A. P. Kovalevskiiab

a Novosibirsk State Technical University, pr. Marksa, 20, 630073, Novosibirsk, Russia
b Novosibirsk State University, Pirogova str., 2, 630090, Novosibirsk, Russia
References:
Abstract: We consider testing the hypothesis of normality for 2, 3, 4 samples in absence of a priori information about its distribution parameters and alternative hypotheses. We base a precise test on a ratio of a range to a minimal spacing. We compare the test with Shapiro & Wilk test.
Keywords: normality test, L'Huillier formula, small sample size, Shapiro & Wilk test, spherical tetrahedron.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00683_а
Received September 10, 2017, published November 27, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.233
MSC: 62F03
Language: Russian
Citation: A. P. Kovalevskii, “Normality tests for very small sample sizes”, Sib. Èlektron. Mat. Izv., 14 (2017), 1207–1214
Citation in format AMSBIB
\Bibitem{Kov17}
\by A.~P.~Kovalevskii
\paper Normality tests for very small sample sizes
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1207--1214
\mathnet{http://mi.mathnet.ru/semr861}
\crossref{https://doi.org/10.17377/semi.2017.14.102}
Linking options:
  • https://www.mathnet.ru/eng/semr861
  • https://www.mathnet.ru/eng/semr/v14/p1207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :156
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024