|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 8–13
(Mi semr86)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Research papers
On the Mazurov conjecture
V. A. Antonov, S. G. Chekanov South Ural State University
Abstract:
A conjecture by V. D. Mazurov states that if, in a $2$-Frobenius group $G=P\lambda(\langle x\rangle\lambda\langle y\rangle)$ of type $(p,q,r)$, the subgroup $C_P(y)$ is of exponent $p$ then $Exp(P)=p$. In [1] this conjecture is proved for $2$-Frobenius groups of type $(3,5,2)$. In this paper a counterexample to Mazurov's conjecture is constructed.
Received October 23, 2007, published January 29, 2008
Citation:
V. A. Antonov, S. G. Chekanov, “On the Mazurov conjecture”, Sib. Èlektron. Mat. Izv., 5 (2008), 8–13
Linking options:
https://www.mathnet.ru/eng/semr86 https://www.mathnet.ru/eng/semr/v5/p8
|
|