Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1188–1197
DOI: https://doi.org/10.17377/semi.2017.14.100
(Mi semr859)
 

This article is cited in 1 scientific paper (total in 1 paper)

Geometry and topology

On the volume of double twist link cone-manifolds

Anh T. Tran

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
Full-text PDF (170 kB) Citations (1)
References:
Abstract: We consider the double twist link $J(2m+1, 2n+1)$ which is the two-bridge link corresponding to the continued fraction $(2m+1)-1/(2n+1)$. It is known that $J(2m+1, 2n+1)$ has reducible nonabelian $SL_2(\mathbb C)$-character variety if and only if $m=n$. In this paper we give a formula for the volume of hyperbolic cone-manifolds of $J(2m+1,2m+1)$. We also give a formula for the A-polynomial $2$-tuple corresponding to the canonical component of the character variety of $J(2m+1,2m+1)$.
Keywords: canonical component, cone-manifold, hyperbolic volume, the A-polynomial, two-bridge link, double twist link.
Funding agency Grant number
Simons Foundation 354595
The work is supported by Simons Foundation (#354595 to Anh Tran).
Received January 25, 2017, published November 22, 2017
Bibliographic databases:
Document Type: Article
UDC: 514.13
MSC: 57M27,57M25
Language: English
Citation: Anh T. Tran, “On the volume of double twist link cone-manifolds”, Sib. Èlektron. Mat. Izv., 14 (2017), 1188–1197
Citation in format AMSBIB
\Bibitem{Tra17}
\by Anh~T.~Tran
\paper On the volume of double twist link cone-manifolds
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1188--1197
\mathnet{http://mi.mathnet.ru/semr859}
\crossref{https://doi.org/10.17377/semi.2017.14.100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454861900032}
Linking options:
  • https://www.mathnet.ru/eng/semr859
  • https://www.mathnet.ru/eng/semr/v14/p1188
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :29
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024