Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1153–1187
DOI: https://doi.org/10.17377/semi.2017.14.099
(Mi semr858)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$

E. P. Petrov

Altai State University, pr. Lenina, 61, 656049, Barnaul, Russia
Full-text PDF (273 kB) Citations (3)
References:
Abstract: In this paper we describe structure and defining relations of $2$-generated nilpotent algebra $R$ over arbitrary field with condition $dim R^{N}/R^{N+1} = 2$ for some natural number $N \geq 3$. It is proved that such algebra $R$ over a field of characteristic not two satisfies the standard identity of much smaller degree than $N$ (for large values of $N$).
Keywords: defining relations, identities, nilpotent algebra.
Received July 13, 2017, published November 22, 2017
Bibliographic databases:
Document Type: Article
UDC: 512.552.4
MSC: 16R10
Language: Russian
Citation: E. P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$”, Sib. Èlektron. Mat. Izv., 14 (2017), 1153–1187
Citation in format AMSBIB
\Bibitem{Pet17}
\by E.~P.~Petrov
\paper Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim\, R^{N}/R^{N+1} = 2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1153--1187
\mathnet{http://mi.mathnet.ru/semr858}
\crossref{https://doi.org/10.17377/semi.2017.14.099}
Linking options:
  • https://www.mathnet.ru/eng/semr858
  • https://www.mathnet.ru/eng/semr/v14/p1153
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024