|
Mathematical logic, algebra and number theory
Finite algebras with non-computable morphisms
M. S. Sheremetab a Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
b Siberian Institute of Management RANEPA,
ul. Nizhegorodskaya, 6,
630102, Novosibirsk, Russia
Abstract:
We construct a variety $\mathbf V$ of partial algebgras
with a finite basis of Kleene identities
and a computable sequence $(\mathcal A_n \mid n< \omega)$
of finite algebras in $\mathbf V$ with a non-computable set
$\{n \mid \mathcal A_n\ \text{is simple in}\ \mathbf V\}$,
where the property ‘simple’ is considered
with respect to epimorphisms.
Keywords:
partial algebra, quasi-variety, epimorphism, computable sequence.
Received April 27, 2017, published November 14, 2017
Citation:
M. S. Sheremet, “Finite algebras with non-computable morphisms”, Sib. Èlektron. Mat. Izv., 14 (2017), 1147–1152
Linking options:
https://www.mathnet.ru/eng/semr854 https://www.mathnet.ru/eng/semr/v14/p1147
|
|