Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2008, Volume 5, Pages 1–7 (Mi semr85)  

Research papers

On collection of all computable subsets on admissible sets

V. G. Puzarenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We study the existence of computable numberings of the set of all $\Delta$-predicates over admissible sets. We construct an admissible set whose set of all $\Delta$-predicates fails to have such a numbering and give a series of examples of admissible sets in which such numberings exist.
Received June 25, 2007, published January 24, 2008
Bibliographic databases:
Document Type: Article
UDC: 510.5
MSC: 03D60
Language: Russian
Citation: V. G. Puzarenko, “On collection of all computable subsets on admissible sets”, Sib. Èlektron. Mat. Izv., 5 (2008), 1–7
Citation in format AMSBIB
\Bibitem{Puz08}
\by V.~G.~Puzarenko
\paper On collection of all computable subsets on admissible sets
\jour Sib. \`Elektron. Mat. Izv.
\yr 2008
\vol 5
\pages 1--7
\mathnet{http://mi.mathnet.ru/semr85}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586616}
Linking options:
  • https://www.mathnet.ru/eng/semr85
  • https://www.mathnet.ru/eng/semr/v5/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024