Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 1011–1016
DOI: https://doi.org/10.17377/semi.2017.14.085
(Mi semr842)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On groups isospectral to the automorphism group of the second sporadic group of Janko

A. Kh. Zhurtov, M. Kh. Shermetova

Kabardino-Balkarian State University, str. Chernyshevsky, 173, 360004, Nalchik, Russia
Full-text PDF (146 kB) Citations (1)
References:
Abstract: We prove that every finite group having the same set of element orders as $Aut(J_2)$ is isomorphic either to $Aut(J_2)$ or to an extension of a non-trivial $2$-group by $A_8$, or to some soluble group.
Keywords: isospectral groups, Frobenius group, sporadic groups of Janko, finite groups.
Received June 15, 2017, published October 6, 2017
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D05
Language: Russian
Citation: A. Kh. Zhurtov, M. Kh. Shermetova, “On groups isospectral to the automorphism group of the second sporadic group of Janko”, Sib. Èlektron. Mat. Izv., 14 (2017), 1011–1016
Citation in format AMSBIB
\Bibitem{ZhuShe17}
\by A.~Kh.~Zhurtov, M.~Kh.~Shermetova
\paper On groups isospectral to the automorphism group of the second sporadic group of Janko
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 1011--1016
\mathnet{http://mi.mathnet.ru/semr842}
\crossref{https://doi.org/10.17377/semi.2017.14.085}
Linking options:
  • https://www.mathnet.ru/eng/semr842
  • https://www.mathnet.ru/eng/semr/v14/p1011
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :70
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024