Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 986–993
DOI: https://doi.org/10.17377/semi.2017.14.083
(Mi semr840)
 

Geometry and topology

On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II

A. P. Kopylovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 2 630090, Novosibirsk, Russia
References:
Abstract: We prove the theorem on the unique determination of a strictly convex domain in $\mathbb R^n$, where $n \ge 2$, in the class of all $n$-dimensional domains by the condition of the local isometry of the Hausdorff boundaries in the relative metrics, which is a generalization of A. D. Aleksandrov's theorem on the unique determination of a strictly convex domain by the condition of the (global) isometry of the boundaries in the relative metrics.
We also prove that, in the cases of a plane domain $U$ with nonsmooth boundary and of a three-dimensional domain $A$ with smooth boundary, the convexity of the domain is no longer necessary for its unique determination by the condition of the local isometry of the boundaries in the relative metrics.
Keywords: intrinsic metric, relative metric of the boundary, local isometry of the boundaries, strict convexity.
Received December 28, 2016, published September 29, 2017
Bibliographic databases:
Document Type: Article
UDC: 514.772.35
MSC: 53C45
Language: English
Citation: A. P. Kopylov, “On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics. II”, Sib. Èlektron. Mat. Izv., 14 (2017), 986–993
Citation in format AMSBIB
\Bibitem{Kop17}
\by A.~P.~Kopylov
\paper On the unique determination of domains by the condition of the local isometry of the boundaries in the relative metrics.~II
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 986--993
\mathnet{http://mi.mathnet.ru/semr840}
\crossref{https://doi.org/10.17377/semi.2017.14.083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454861900016}
Linking options:
  • https://www.mathnet.ru/eng/semr840
  • https://www.mathnet.ru/eng/semr/v14/p986
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :35
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024