Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 903–913
DOI: https://doi.org/10.17377/semi.2017.14.076
(Mi semr833)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Explicit expression for a first integral for some classes of two-dimensional differential systems

R. Boukoucha

Department of Technology, Faculty of Technology, University of Bejaia, 06000 Bejaia, Algeria
Full-text PDF (173 kB) Citations (1)
References:
Abstract: In this paper we are interested in studying the existence of first integrals and then the trajectories for classes of two-dimensional differential systems of the forms
\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=\frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta } }+x\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \\ y^{\prime }=\frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta } }+y\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \end{array} \right. \end{equation*}
and
\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( \frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta } }\right) , \\ y^{\prime }=y\left( \frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta } }\right) , \end{array} \right. \end{equation*}
where $a,$ $b,$ $n,$ $m$ are positive integers, $\alpha ,$ $\beta ,$ $\gamma ,$ $\delta \in \mathbb{Q} $ and $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ T\left( x,y\right) ,$ $K\left( x,y\right) ,$ $S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a,$ $a,$ $b$ respectively. Concrete examples exhibiting the applicability of our result are introduced.
Keywords: autonomous differential system, Kolmogorov system, first integral, trajectories, Hilbert 16th problem.
Received October 21, 2016, published September 14, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: English
Citation: R. Boukoucha, “Explicit expression for a first integral for some classes of two-dimensional differential systems”, Sib. Èlektron. Mat. Izv., 14 (2017), 903–913
Citation in format AMSBIB
\Bibitem{Bou17}
\by R.~Boukoucha
\paper Explicit expression for a first integral for some classes of two-dimensional differential systems
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 903--913
\mathnet{http://mi.mathnet.ru/semr833}
\crossref{https://doi.org/10.17377/semi.2017.14.076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454861900009}
Linking options:
  • https://www.mathnet.ru/eng/semr833
  • https://www.mathnet.ru/eng/semr/v14/p903
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:161
    Full-text PDF :40
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024