Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 877–888
DOI: https://doi.org/10.17377/semi.2017.14.074
(Mi semr831)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics and mathematical cybernetics

Perfect binary codes of infinite length with complete system of triples

S. A. Malyugin

Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (190 kB) Citations (2)
References:
Abstract: An infinite-dimensional binary cube $\{0,1\}_0^{\mathbb N}$ consists of all sequences $u = (u_1,u_2,\dots)$, where $u_i= 0,1$, and all $u_i =0$ except some finite set of indices $i \in \mathbb N$. A subset $C \subset \{0,1\}_0^{\mathbb N}$ is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centers in $C$ are pairwise disjoint and their union covers this binary cube. We say that the perfect code $C$ has the complete system of triples if $C + C$ contains all vectors of $\{0,1\}_0^{\mathbb N}$ having weight 3. In this article we construct perfect binary codes having the complete system of triples (in particular, such codes are nonsystematic). These codes can be obtained from the Hamming code $H^\infty$ by switchings a some family of disjoint components ${\mathcal B} = \{R_1^{u_1},R_2^{u_2},\dots\}$. Unlike the codes of finite length, the family $\mathcal B$ must obey the rigid condition of sparsity. It is shown particularly that if the family of components $\mathcal B$ does not satisfy the condition of sparsity then it can generate a perfect code having non-complete system of triples.
Keywords: perfect binary code, component, complete system of triples, nonsystematic code, condition of sparsity.
Received July 26, 2017, published September 14, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.72
MSC: 94B60
Language: Russian
Citation: S. A. Malyugin, “Perfect binary codes of infinite length with complete system of triples”, Sib. Èlektron. Mat. Izv., 14 (2017), 877–888
Citation in format AMSBIB
\Bibitem{Mal17}
\by S.~A.~Malyugin
\paper Perfect binary codes of infinite length with complete system of triples
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 877--888
\mathnet{http://mi.mathnet.ru/semr831}
\crossref{https://doi.org/10.17377/semi.2017.14.074}
Linking options:
  • https://www.mathnet.ru/eng/semr831
  • https://www.mathnet.ru/eng/semr/v14/p877
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :33
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024