Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 864–876
DOI: https://doi.org/10.17377/semi.2017.14.073
(Mi semr830)
 

Differentical equations, dynamical systems and optimal control

The steady problem of the motion of a rigid ball in a Stokes–Poiseuille flow: differentiability of the solution with respect to the ball position

A. A. Mestnikovaa, V. N. Starovoitovba, B. N. Starovoitovaa

a Lavrentyev Institute of Hydrodynamics, pr. Lavrentyeva, 15 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 2 630090, Novosibirsk, Russia
References:
Abstract: This paper deals with the steady problem of the motion of a rigid body in a viscous incompressible fluid that fills a cylindrical domain. The fluid flow is governed by the Stokes equation and tends to Poiseuille flow at infinity. The body is a ball that moves according to the laws of classical mechanics. The unique solvability of this problem was proved in an earlier work of the authors. Here, the differentiability of the solution in the function space $L^2$ with respect to the position of the ball is established.
Keywords: viscous fluid, rigid body, cylindrical pipe, steady motion.
Funding agency Grant number
Russian Science Foundation 15-11-20019
This work was supported by the Russian Science Foundation (project 15-11-20019).
Received May 2, 2017, published September 14, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.958+532.3
MSC: 35Q35+76D07
Language: English
Citation: A. A. Mestnikova, V. N. Starovoitov, B. N. Starovoitova, “The steady problem of the motion of a rigid ball in a Stokes–Poiseuille flow: differentiability of the solution with respect to the ball position”, Sib. Èlektron. Mat. Izv., 14 (2017), 864–876
Citation in format AMSBIB
\Bibitem{MesStaSta17}
\by A.~A.~Mestnikova, V.~N.~Starovoitov, B.~N.~Starovoitova
\paper The steady problem of the motion of a rigid ball in a Stokes--Poiseuille flow: differentiability of the solution with respect to the ball position
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 864--876
\mathnet{http://mi.mathnet.ru/semr830}
\crossref{https://doi.org/10.17377/semi.2017.14.073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454861900006}
Linking options:
  • https://www.mathnet.ru/eng/semr830
  • https://www.mathnet.ru/eng/semr/v14/p864
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :38
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024