Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 526–532 (Mi semr83)  

Research papers

On the compactness principle in variable space $L^p$ for periodic composite structures

V. V. Shumilova

Branch of the Moscow Psychology-Social Institute, Murom
References:
Abstract: We consider the compactness principle in the variable space $L^p$ related to a periodic Borel measure. It is supposed that the periodic Borel measure describes a periodic singular or composite structure. We prove the compactness principle for periodic grids, box structures, involving Cantor's constructions, and corresponding composite structures.
Keywords: periodic structures, periodic Borel measure, compactness principle.
Received April 28, 2008, published December 23, 2009
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46B50
Language: Russian
Citation: V. V. Shumilova, “On the compactness principle in variable space $L^p$ for periodic composite structures”, Sib. Èlektron. Mat. Izv., 6 (2009), 526–532
Citation in format AMSBIB
\Bibitem{Shu09}
\by V.~V.~Shumilova
\paper On the compactness principle in variable space $L^p$ for periodic composite structures
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 526--532
\mathnet{http://mi.mathnet.ru/semr83}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586706}
\elib{https://elibrary.ru/item.asp?id=13035603}
Linking options:
  • https://www.mathnet.ru/eng/semr83
  • https://www.mathnet.ru/eng/semr/v6/p526
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :59
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024