|
This article is cited in 4 scientific papers (total in 4 papers)
Real, complex and functional analysis
Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces
A. V. Greshnovab a Sobolev Institute of Mathematics,
pr. Koptyuga, 4,
630090, Novosibirsk, Russia
b Novosibirsk State University,
ul. Pirogova, 1,
630090, Novosibirsk, Russia
Abstract:
We get some estimates for interior of arbitrary $(q_1,q_2)$-quasimetric ball. We prove theorem of regularization of $(q_1,q_2)$-quasimetric that generalizes corresponding results of R. Alvarado and M. Mitrea. We introduce a notion of $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space and prove that every $\underline{\lim}$-weak symmetric $(q_1,q_2)$-quasimetric space satisfies $T_3$-axiom.
Keywords:
distance function, $(q_1,q_2)$-quasimetric, open set, interior of $(q_1,q_2)$-quasimetric ball, $\underline{\lim}$-weak symmetry, separation axioms, regularization of a $(q_1,q_2)$-quasimetric.
Received July 11, 2017, published August 4, 2017
Citation:
A. V. Greshnov, “Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces”, Sib. Èlektron. Mat. Izv., 14 (2017), 765–773
Linking options:
https://www.mathnet.ru/eng/semr822 https://www.mathnet.ru/eng/semr/v14/p765
|
|