Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 732–736
DOI: https://doi.org/10.17377/semi.2017.14.062
(Mi semr819)
 

Mathematical logic, algebra and number theory

Generic Kleene fixed point theorem

A. N. Rybalovab

a Omsk State University, prospekt Mira 55A, Omsk 644077, Russia
b Sobolev Institute of Mathematics, Pevtsova str. 13, Omsk 644043, Russia
References:
Abstract: Kleene's fixed point theorem states that any algorithmic mapping $\mathcal{A}$ of the set of Turing machines to the set of Turing machines has a fixed point: there is a Turing machine $M$ such that machine $\mathcal{A}(M)$ computes the same function as $M$. In this paper we prove a generic analog of this theorem: any algorithmic mapping $\mathcal{A}$ of a set of “almost all” Turing machines to the set of Turing machines has a fixed point.
Keywords: Kleene fixed point theorem, generic computability.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00577
Received April 26, 2017, published August 1, 2017
Bibliographic databases:
Document Type: Article
UDC: 510.57
MSC: 11U99
Language: Russian
Citation: A. N. Rybalov, “Generic Kleene fixed point theorem”, Sib. Èlektron. Mat. Izv., 14 (2017), 732–736
Citation in format AMSBIB
\Bibitem{Ryb17}
\by A.~N.~Rybalov
\paper Generic Kleene fixed point theorem
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 732--736
\mathnet{http://mi.mathnet.ru/semr819}
\crossref{https://doi.org/10.17377/semi.2017.14.062}
Linking options:
  • https://www.mathnet.ru/eng/semr819
  • https://www.mathnet.ru/eng/semr/v14/p732
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :54
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024