Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 640–646
DOI: https://doi.org/10.17377/semi.2017.14.055
(Mi semr812)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete mathematics and mathematical cybernetics

Boolean quadric polytopes are faces of linear ordering polytopes

A. N. Maksimenko

P. G. Demidov Yaroslavl State University, Sovetskaya 14, 150000, Yaroslavl, Russia
Full-text PDF (155 kB) Citations (1)
References:
Abstract: Let $P_{\mathrm{BQP}}(n)$ be a boolean quadric polytope, $n\in\mathbb{N}$, $P_{\,\mathrm{LO}}(m)$ — linear ordering polytope, $m\in\mathbb{N}$. It is shown that $P_{\mathrm{\,BQP}}(n)$ is affine equivalent to a face of $P_{\,\mathrm{LO}}(2n)$.
Keywords: boolean quadric polytope, linear ordering polytope, stable set polytope, double covering polytope, affine equivalence.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.5768.2017/П220
Received April 20, 2017, published July 18, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.854
MSC: 90C57
Language: Russian
Citation: A. N. Maksimenko, “Boolean quadric polytopes are faces of linear ordering polytopes”, Sib. Èlektron. Mat. Izv., 14 (2017), 640–646
Citation in format AMSBIB
\Bibitem{Mak17}
\by A.~N.~Maksimenko
\paper Boolean quadric polytopes are faces of linear ordering polytopes
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 640--646
\mathnet{http://mi.mathnet.ru/semr812}
\crossref{https://doi.org/10.17377/semi.2017.14.055}
Linking options:
  • https://www.mathnet.ru/eng/semr812
  • https://www.mathnet.ru/eng/semr/v14/p640
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1253
    Full-text PDF :39
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024