Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 518–521 (Mi semr81)  

This article is cited in 4 scientific papers (total in 4 papers)

Short communications

Virtual $3$-manifolds

S. V. Matveev

Chelyabinsk State University
Full-text PDF (132 kB) Citations (4)
References:
Abstract: We generalize the class if all compact $3$-manifolds to a class of new objects called virtual $3$-manifolds. Each virtual $3$-manifold determines a $3$-manifold with singularities of the type $\mathrm{Con}(RP^2)$ and may be presented by a triangulation as well as by a special spine. Many properties and invariants of $3$-manifolds can be extended to the virtual ones. We restrict ourselves to mentioning Turaev–Viro invariants and two-sheeted branched coverings of virtual $3$-manifolds.
Keywords: $3$-manifold, special spine, virtual $3$-manifold.
Received December 3, 2009, published December 10, 2009
Bibliographic databases:
Document Type: Article
UDC: 515.16
MSC: 57M20
Language: English
Citation: S. V. Matveev, “Virtual $3$-manifolds”, Sib. Èlektron. Mat. Izv., 6 (2009), 518–521
Citation in format AMSBIB
\Bibitem{Mat09}
\by S.~V.~Matveev
\paper Virtual $3$-manifolds
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 518--521
\mathnet{http://mi.mathnet.ru/semr81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586704}
Linking options:
  • https://www.mathnet.ru/eng/semr81
  • https://www.mathnet.ru/eng/semr/v6/p518
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :93
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024